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Received 7 November 1988. in final form 5 September 1989 

Abstract. As a low-temperature model for Ce heavy-fermion systems with strong spin-orbit 
coupling ( J  = $), quasiparticle states are derived at low temperature across a crossover 
transition from the high-temperature regime using a finite-temperature Green-function 
decoupling method for the spin-orbit Anderson lattice Hamiltonian. In order to compare 
these quasiparticle states with those of the Zou-Anderson mean-field model, the low- 
temperature magnetic susceptibilities x & T )  ( q  = 0 and q = Q) and the effective magnetic 
moments of quasiparticles are calculated for the simple cubic lattice using these two 
approaches, and then compared with the experimental results. 

1. Introduction 

Recent experimental results indicate that an antiferromagnetic correlation is a charac- 
teristic phenomenon commonly observed in many heavy-fermion systems between the 
Kondo temperature TK and the coherence temperature To. While an antiferromagnetic 
phase transition often takes place in uranium heavy-fermion compounds (URu2Si2 TN = 
17.5 K (Palstra et a1 1985), UPt, T,v = 5 K (Aeppli et a1 1988), UBeI3 (Neumann et a1 
1986), U,Zn,, TN = 9.7 K (Broholm et a1 1987a), etc.), only antiferomagnetic cor- 
relations are observed in the cerium compounds (CeA13 (Barth et al 1989), CeCuzSiz 
(Uemura et a1 1989), CeCu, (Gangopadhyay et a1 1988), etc., except for CeAI, TN = 
3.58 K (Barbara et a1 1977)) which remain normal heavy-fermion systems down to very 
low temperatures. It is known that the former heavy-fermion compounds generally have 
higher TK values (30-70 K), whereas the latter ones have lower TK values (-5 K). 
Therefore, to understand the low-temperature properties of a prototype heavy-fermion 
system it is important to study the temperature-dependent magnetic susceptibilities and 
magnetic moments of the Ce heavy-fermion compounds in comparison with those of the 
U compounds. 

A theoretical model to describe the low-temperature quasiparticle states of Ce heavy- 
fermion systems is the spin-orbit-coupling Zou-Anderson (ZA) model. This model, 
which was derived as a mean-field model from a band-theory treatment of the Kondo- 
resonance phase shift by Zou and Anderson (1986), can also be obtained using the mean- 
field slave-boson approach in the spirit of the Gutzwiller approximation. Beyond the 
mean-field level one can, in principle, incorporate into this model the various quasi- 
particle interactions through the fluctuations of the slave-bosons and the constraint field 
(Auerbach et a1 1988, Kaga and Yoshida 1989). However, in this approach it is extremely 
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hard to take properly into account finite-temperature effects as well as these fluctuations. 
Therefore, we adopt the finite-temperature Green-function approach of the spin-orbit- 
coupling Anderson lattice Hamiltonian for Ce heavy-fermion systems, which was earlier 
employed for the non-spin-orbit Anderson lattice model (Kaga et a1 1988). Though the 
treatment of Coulomb interaction in this approach is still quite limited, the characteristic 
lattice self-energies can be obtained as a function of temperature and the heavy-fermion 
quasiparticle states can be derived after the crossover transition from the high-tem- 
perature regime (Kaga and Kubo 1987). Using the resulting quasiparticle Green func- 
tions of this approach and of the ZA model we calculate the temperature-dependent 
uniform and antiferromagnetic (staggered) susceptibilities at low temperatures and 
compare them with experiment. 

An important question that has been posed regarding the ZA model (Zhang and Lee 
1987, Aeppli and Varma 1987, Cox 1987) is whether or not the four non-hybridised 
linear combinations of the six f orbitals ( M  = -8-5, J = 5 )  other than the hybridised 
quasiparticle doublets with pseudo-spins cy = i 1 can be raised to the renormalised f- 
level Ef = pF + TK close to the Fermi level pF after the renormalisation. This is because 
these non-hybridised levels could contribute to the non-negligible Van Vleck term in 
the magnetic susceptibility. Since the ZA model was derived essentially in the Gutzwiller 
approximation using the mean-field approach, whose renormalisation effect simply 
squashes the hybridisation matrix element and lifts the bare atomic f-level E !  to the 
Kondo-resonance level Er, this point was not clear, or rather the non-hybridised levels 
as well could have been taken to be similarly renormalised at low temperatures. It is 
therefore necessary to go one step beyond the mean-field approximation. We shall show 
that our finite-temperature approach sheds some light on this problem. 

In this connection, we will demonstrate that the effective magneticmomentsobtained 
for the Ce spin-orbit-coupling quasiparticle states are severely reduced from the free- 
ionvalues peff = 2.54 pB, which are observed at high temperatures. The calculatedvalues 
are smaller for the antiferromagnetic moment than for the ferromagnetic one, and come 
close to the observed antiferromagnetically ordered moment (CeAI,) and ordering 
moment (CeA1,) of some Ce heavy-fermion compounds. 

2. Two spin-orbit coupling models 

Two quasiparticle models with spin-orbit coupling for the Ce heavy-fermion compounds 
are studied in order to calculate the temperature dependences of the magnetic sus- 
ceptibilities x,(T) and magnetic moments for q = 0 and q = Q = ( n / a ,  n / a ,  n / u )  of the 
simple cubic lattice. The first is the mean-field effective Hamiltonian for quasiparticles 
proposed by Zou and Anderson (1986) (ZA model), and the second is the U = x spin- 
orbit Anderson lattice model (SA model), whose non-spin-orbit version has been studied 
in the Green-function-decoupling approach by Kaga et a1 (1988), Kaga and Kubo (1988) 
and others (Fedro and Sinha 1982, Baumgartel and Muller-Hartmann 1982, Costi 1985, 
Czycholl 1985), and is adapted here for spin-orbit coupling. 

2.1. The Zou-Anderson quasiparticle (ZA)  model 

The Zou-Anderson (ZA) model can be considered as the slave-boson, mean-field Ham- 
iltonian for quasiparticles with spin-orbit coupling, and is given by 
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with the renormalised anisotropic hybridisation i3boaM,(k)/dN at site R,, where 
i = and bo is the mean-field slave-boson amplitude of order b i  - TKD ( D  is half 
the conduction band width measured from its centre at energy zero), and the anisotropy 
coefficient aM,(k) is given by 

aM,(k) = - ( 4 . ~ / 3 ) " ~ ( ~ [ ( 7  - 2M(~) /14 ] '~~Y~-" '* (k ) .  (2) 

Here, N ,  is the number of lattice sites, M the z component of the spin-orbit angular 
momentum J = 1 + s ( J  = i), and a( = * 1) is the eigenvalue of the z component of the 
Pauli spin matrix (T. In the ZA model the quasiparticle states are formed around the 
renormalised f-level Ef close to the Fermi level ,U, with the opening of a hybridisation 
gap for temperatures below the mean-field transition temperature TK (the Kondo tem- 
perature); Ef = pF + TK at T = 0. The eigenstate l q ! ~ ; ( k ) ) ~ ~  and the eigenvalue 
E t A ( k )  of the Hamiltonian (1) are expressed as 

M=5/2 

for the hybridised quasiparticle band with index v (= 5 1). The quasiparticle carries a 
pseudo-spin a (= i 1), which is comprised of the real conduction spin s = 4a ( a  = * 1 
correspond to a = 2 1) in the intersite region and the f-orbital magnetic moment on Ce 
atoms; the latter, which must be compatible with the conduction spin s ( J  = I + s), is 
given by the particular linear combination of the z components M (  = -3-3) at each k .  
Therefore, in this model the quasiparticle states of Ce heavy-fermion systems 
are represented by only the two-fold degenerate (with pseudo-spin a = 2 1) 
hybridised wavefunctions, corresponding to the Kramers doublets, with coherence 
factors A:A(k)  and A:A(k)C:A(k) ,  where A:A(k)  = [l + C$A]-1/2 and C?"(k) = 

We consider the heavy-fermion states in which the Fermi level pF  is situated near 
the top of the lower ( v  = -) hybridised band, i.e., pF = E-(kF); p~ = E-(&(kF)) gives 
the conduction band energy as &(kF) = p + b i / T K  (TK = E~ - pF) which conveniently 
defines the Fermi surface. The hybridisation gap E ,  = E+(O) - E - ( Q )  is obtained as 

The quasiparticle Green function for the ZA model is represented as the sum of the 

bo / [E tA(k )  - E f l .  

Eg = 2TK(&(k) - pF] / (D - p F )  = 2 b ? l / ( D  - F F ) .  

f- and conduction-electron components 

where the second-order effect of the anisotropic hybridisation i3boaM,(k) leads to only 
the squared hybridisation strength bg in the denominator after taking the sum over M .  
The Green function in the spin-orbit ZA model is therefore of the same form as that of 
the non-spin-orbit isotropic hybridisation model. However, the expression for the 
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magnetic susceptibility in the ZA model becomes different from that in the latter in terms 
of the effective magnetic moment, as we shall see later. 

2.2. Quasiparticle states derived f r o m  the spin-orbit Anderson lattice ( S A )  model 

In this section we show a derivation of quasiparticle Green functions from the bare 
particle spin-orbit-coupling Anderson lattice (SA) model for Ce heavy-fermion systems. 
For this purpose the same Green function decoupling scheme can be used as was 
employed for the non-spin-orbit model (Kaga et a1 1988). Here, an important issue 
arises as to the heavy-fermion states formed under spin-orbit coupling; whether or not 
only the two degenerate hybridised f orbitals are renormalised and raised near the Fermi 
level,uFtoact as the quasiparticle states andcontribute to the low-temperature properties 
of the heavy-fermion systems (Anderson and Zou 1987). There are other assertions 
(Zhang and Lee 1987, Aeppli and Varma 1987, Cox 1987) that the other four non- 
hybridised combinations of f orbitals are also renormalised contributing to the low- 
energy, heavy-fermion excitations. Our derivation of quasiparticle states in this section 
will shed some light on this issue. 

The bare particle SA model is written as 

+ (~~V,,/V'N~) C. [aYMo(k)fj!Gc~, exp(-ik.R,) + HC], (6) 
i k M o  

where E :  and V ,  are the deep bare f-electron level and the bare hybridisation, and 
f!M and ciiU are the bare annihilation operators. The Coulomb repulsion U is taken here 
as infinitely large ( U  = x) for comparison with the Zou-Anderson model derived in the 
U = x slave-boson approach. The eigenstates and eigenvalues of this Hamiltonian 
without the Coulomb term are written as 

There are four more non-hybridised linear combinations of f  orbitals with energy E!.  
Let us consider how these states and energies are renormalised with the introduction of 
the Coulomb interaction U .  Instead of deriving these quantities, we will obtain the 
bare-particle Green functions in the higher-order decoupling scheme, from which we 
construct the quasiparticle Green functions for heavy-fermion states corresponding to 
that (5) of the ZA model. We assume the anisotropy coefficients a,$,(k) which come 
from the spin-orbit coupling of f orbitals are invariant in the SA model without the 
Coulomb term and in the ZA model. 1 k ,  f ,  CY)" in (8) is the Bloch state with pseudo-spin 
a made up of a linear combination of the spin-orbit-coupled bare f orbitals, which 
hybridises with a conduction state 1 k ,  U)" with spin s = tu. 

The bare f electron Green function with spin-orbit coupling can be derived by using 
the decoupling procedure in the hierarchy of the equations of motion (Kaga et a1 1988). 
We assume that the spin-orbit splitting is much larger than the bare hybridisation energy 
VI), a condition that is satisfied in heavy-fermion compounds. Then one can readily show 
that in the decoupling approximation the pseudo-spin a is conserved even under the 
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influence of the Coulomb interaction U.  The bare-particle Green function G : , (k ,  w )  at 
finite temperature is the sum of the f and conduction components, Gy,(k, w )  and 
G !%k> w ) ,  being given, using the temperature-dependent self-energy ZF,(o) = 
Re 2F,(w) + i Im CF,(w), as 

G!,(k,  w )  = G?,(k, w )  + G:,(k, 0) (10) 

(11) 

(12) 

y =  I 

GF,(k, w )  = l / { w  - & p  - Cf,(w> - Vi/[w - & ( I C ) ] }  

G!,(k,  w )  = l/{w - &(k) - v ; / [ w  - & y  - Cy,(w)]}. 

Though this self-energy is independent of momentum k ,  it has the characteristics of a 
periodic lattice and is different from the single-site impurity self-energy, which was 
verified in the detailed analysis of the two self-energies (Kaga and Kubo 1987). 

At low temperature there is a large self-energy renormalisation--d Re 2y,(w)/ 
aw - A/TK, (TK - D exp(-neF/A), A nNo(,uF)Vi)-for G!,(k,  w )  in the energy 
range w - pF (the Fermi level), where Im Cf,(w) is vanishingly small, and the quasi- 
particle picture becomes valid. Now, in this regime the spin-orbit-coupled quasiparticle 
states are formed having the quasiparticle bands E $ , ( k ) ,  ( v  = k), where EqVLY(k) is 
obtained from the poles of G:,(k, U), as w = E4,,(k). The quasiparticle Green function 
G 4,,(k, w )  is constructed by employing the standard procedure; the energy-denominator 
of Cy,(k, 0) is expanded to first order in power-series of w - E $ , ( k )  in the energies w 
close to pF which is assumed to be in the E'!,(k) band. The quasiparticle Green function 
G $, (k ,  w )  is then formed so as to satisfy the spectral sum-rule at each k-vector with the 
Lorentzian broadening for a small imaginary part Im Cy,(E'! , (k) ) .  First, the renor- 
malised bare-particle Green functions are written as 

GF,(k, 0) = z , ( k ) / [ w  - E-y , (k) ]  

G!,(k,  U) = Z , ( k ) / [ W  - E-'!&)] 

z ( k )  = (1 - a Re2':,(w)/ao/,,=Eq_,ck,) - 1  

Z*(k)  = {z (k) - '  + Vi/[E!,(k) - & ( k ) ] 2 } 4  

z c ( 4  = ViZf(k)/[E'!&) - &(k)l2 

E y a ( k )  = ~ ' ! @ ( k )  + iz,(k) Im z ~ ~ ( E s , ( ~ ) ) .  

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

using the renormalisation factors 

and the complex quasiparticle energy E$, (k )  with the small imaginary part 

Here, the quasiparticle band E! , (k )  defined as the zeros of the denominator P ( k ,  w )  
of G FLY ( k ,  U), (1 l), is also given approximately by the solution of 

P ( k ,  w )  = w - E !  - Re ( w )  - V;/[co - ~ ( k ) ]  

= z ( k ) - ' { o  - & ?  - z(k)Vi/[w - & ( k ) ] }  = 0 (19) 

because z,(k)-' - z(k)-'  %= V $ / [ E ! , ( k )  - ~ ( k ) ] ~ ,  where = E ?  + R e Z f a (  O EqLY - ( k ) )  . 
The quasiparticle band E'!,(k) thus obtained coincides with that of the Zou-Anderson 
model (4) only when z(k)Vi is independent of k and is equal to b$ of the latter. In 
contrast to the ZA model, the quasiparticle bands E4,,(k) and the imaginary part 
z , ( k )  Im Xpw(E'!,(k)) are given only numerically in the SA model. The quasiparticle 
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Green function G%,(k,  U) is obtained by multiplying Gy,(k, w )  by the self-energy 
renormalisation factor z (k) - '  as 

G ! , ( k ,  U) = z,(k)z(k)-'/[o - E' l , (k ) ]  t z,(k)/[w - E Y , ( k ) ]  

= l / [w - & ( k ) ] *  (20) 
Here, we assume that the quasiparticle renorrnalisation comes from the large w depen- 
dence of Re Zy,(w) term only. The first and second terms of the first right-hand side of 
(20) represent the quasiparticle Green functions of f and conduction components, 
respectively. 

2.3. Roles oj'the non-hybridised spin-orbit orbitals 

Soon after Zou and Anderson proposed the ZA model without the non-hybridised linear 
combinations of f  orbitals, a question was raised by a number of workers (Zhang and 
Lee 1987, Aeppli and Varma 1987, Cox 1987) about its validity for the evaluation of the 
magnetic moment; non-inclusion of these orbitals leads to the Van Vleck term in 
the magnetic susceptibility for quasiparticles being neglected, whose contribution was 
estimated to be of the same order as the Pauli term. The important point is then whether 
or not the non-hybridised f orbitals are also renormalised to become quasiparticle states 
near the Fermi level at low temperature (Anderson and Zou 1987). 

According to the bare f Green function obtained in the decoupling scheme in 
(11) under the assumption that the spin-orbit energy is much larger than the bare 
hybridisation matrix Vu, it follows also for the bare states at high temperature that 
hybridisation with conduction state of spin index a(=  51) is possible only for the 
particular linear combination of f orbitals with pseudo-spin a( = t 1) compatible with 
its spin a(= 21). The self-energy renormalisation Zfe(o)  due to the Coulomb inter- 
action U ,  which comes into play through this anisotropic hybridisation ( VoaMo(k ) ) ,  
also becomes effective only for the a = t1 pseudo-spin f combinations lk, 5, a)o, (8). 
Therefore, within the present decoupling scheme approximation the two degenerate 
hybridised orbitals 1 qcl"(k)), ( a  = ') at high temperature, (7), are carried over to the 
degenerate heavy-fermion quasiparticle states 1 E ( k ) )  at low temperatures. These 
heavy-fermion states correspond to the two degenerate ((U = t 1) quasiparticle states 
obtained by Zou and Anderson (1986) in (3). 

Since only the two degenerate quasiparticle states with pseudo-spins (U = i 1 near 
the Fermi level pF in both the models of sections 2.1 and 2.2 arise, we leave out the Van 
Vleck contributions from the non-hybridised, spin-orbit f orbitals in our expressions for 
the magnetic susceptibility of the low-temperature quasiparticle states. There are, 
however, different types of Van Vleck contributions that arise between the lower 
(v = -) and upper (v = +) hybridised bands E : , (k) .  These are discussed in the fol- 
lowing sections. 

3. Magnetic moment and magnetic susceptibility 

Under a small external magnetic field h applied along the z direction the Hamiltonian 
HZA in (1) and H s A  in (6) acquire an additional perturbation H '  = -p  . h,  where p is 
the total magnetic moment operator p = - ( I  + 2 s ) ~ ~ .  Now, consider the magnetic 
moment for quasiparticles states under strong spin-orbit coupling which is much larger 
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than the effective quasiparticle band width (- TK). While the conduction-electron com- 
ponent has only spin magnetic moment -2spB, the f-electron component decomposes 
its magnetic moment p = - ( I  + 2s)pB into p = - (g ,J + J')pB for the J = Q multiplet 
states 1 k ,  4, M), (M = -H). Here, -J'pB is the component orthogonal to the magnetic 
moment operator p, = -g,JpB being diagonalised in the spin-orbit multiplets. and is 
neglected for the large spin-orbit splitting assumed in the present model. Hence, the 
magnetic moment in the quasiparticle state is not conserved between the two components 
of conduction and f electrons. The matrix element of the spatially varying external 
perturbation H '  = - p  h, = -h(p2 exp(iq r ) )  = -hp2,, where h,  = h exp(iq r )  with 
wavevector q ,  or rather that of pz, between 1 w ;  ( k  + q ) )  and 1 W :: ( k ) )  is written as 

p.:"(k + 9, k )  ( W  : (k  + q)Ipzq 1 W:"(k) )  =pBAuCk + q)Av'(k)  

x [ab,, ,  + g,C,(k + 4)CY*(k)  z + 4)aLu(k)Ml (21) 
M 

for the two (ZA and SA) quasiparticle models. Here, the C,(k) and C, , (k )  are the 
Cf" (k )  and C:A(k) in the former model, and (A,(k))* = z , (k ) ,  (A,(k)C,(k))* = 
z , ( k ) z ( k ) - ' ,  E,(k) = ,!??lW(k), and bi  = z ( k ) V $  in the latter model. In equation (21) the 
values of the pseudo-spins CY, a'( = * 1) and the conduction-electron spins U ,  o'( = 5 1) 
correspond to each other, and g, = 8. 

Magnetic susceptibility is given in linear response theory as the linear coefficient in 
the expansion of the magnetisation in an applied magnetic field h .  This linear coefficient 
is the spin-spin correlation function which is the retarded electron-hole two-particle 
propagator. In order to represent magnetic susceptibilities at finite temperature in terms 
of the electron-hole propagators, we convert the Green functions G :$(k, w )  in ( 5 )  and 
G4,(k, o) in (20) into the temperature Green functions G?$(k, io , )  and G?lW(k, io,) 
by analytical continuation, LC) --., io,. Then, the temperature-dependent magnetic sus- 
ceptibility x,(T) for the two models is expressed, using the magnetic moment 
,U $ ( k  + q, k )  of (21), in terms of the static retarded function I'IR(q, 0) of the finite- 
temperature two-particle propagator n(q, io,), which represents the magnetic response 
function 

n(q, i o n )  = - T x  2 lpF$(k  + q,  k)12G,,(k + q ,  i o ,  + ioA)GvlWf(k,  io;)  (22) 
kwk YY' 

CYCY' 

where the respective expressions are to be used for the two models. In the expression 
(22) the inclusion of the interband as well as the intraband contributions are important 
because the former becomes dominant for large q. Writing the product of the two Green 
functions in (22) as their difference and performing the sum over w ;  under the assump- 
tion that the imaginary part of ,!?9-W(k) in (18) for the SA model is negligibly small, one 
obtains the expression for magnetic susceptibility x,( T )  

wheretheE,(k),E,,(k)andE,(k + q)refer tothe E : A ( k ) ,  E$* a n d E t A ( k +  q)  ofthe 
ZA model and E! ( k ) ,  etc. for the SA model. In the latter model the numerically given 
quasiparticle bands E 4, ( k )  and the imaginary parts (18) are dependent on temperature. 
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Figure 1 .  (a )  Temperature-dependent bare f-electron density of states N' j (w) ,  and ( b )  the 
corresponding quasiparticle density of states Nq(w) around the Fermi level pF in the spin- 
orbit Anderson lattice (SA) model with TK = 10 K. The pseudo-gap is considerably reduced 
on the W ( W )  curve. -, T = 1 K;  - --, T = 10 K;  7' = 40 K. 

4. Temperature dependences of xo(Z') and x Q ( T )  

In this section we study the temperature dependences of uniform x o ( T )  and anti- 
ferromagnetic xQ( T )  susceptibilities for the quasiparticle states by explicit numerical 
calculations using the expression (23) in the two different models: the ZA model and the 
SA model. We use the tight-binding conduction band in a simple cubic lattice with half 
the band width D given by D = 6t; 

E(k) = -2t[cos(k,a) + cos(k,a) + cos(k,a)]. (24) 

In the SA model the quasiparticle quantities such as the bands E $ ( k ) ,  the renor- 
malisation factors z , (k) ,  z , (k) ,  z ( k ) ,  the magnetic moments p :$ (k  + q, k )  and the den- 
sities of states N * ( u )  are only given numerically. While in the ZA model we can assume 
the insulating and metallic cases by putting the Fermi level pF either in the hybridisation 
gap E ,  or near the top of the E?*(k)  band, in the SA model the Fermi level cannot be 
controlled and is fixed once the bare parameters such as E F, V o ,  and the number of bare 
f electrons are given (Kaga et a1 1988); E :  appears again about TK above pF. It is now 
well known that the Kondo resonance gives rise to a pseudo-gap on the bare-particle 
density of states at the Fermi level pF when the Anderson-lattice model is renormalised 
at low temperature (Grewe 1984, Kaga et a1 1988). The relative position of the Fermi 
level pF with respect to that of the pseudo-gap is uniquely determined and is almost the 
same in the well defined Kondo-lattice states. In figure l ( a )  and l (b)  we show the typical 
temperature dependences of bare f-electron density-of-states curves NF (U) (figure l ( a ) )  
and of quasiparticle density-of-states curves W ( w )  (figure l ( b ) )  near the Fermi level pF 
in the SA model for TK = 10 K. The W ( U )  is enhanced by a factor of over 10 times 
N F ( o )  and has a less pronounced pseudo-gap near the Fermi level. These quasiparticle 
states derived in the SA model are different from the mean-field quasiparticle states 
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Figure 2. The temperature-dependent uniform 
and antiferromagnetic (staggered) magnetic sus- 
ceptibilities of the Zou-Anderson (ZA) model, 
,y$"(T) and x p ( T ) ,  with TK = 10 K for the two 
cases of large quasiparticle fillings, &(kF)  = 0.5 
and &(kF)  = 0.475, which represent the insulating 
case (lower curve of each pair) and the typical 
metallic case (upper curve of each pair), respect- 
ively. -. x$"( T ) ;  - - -, x$"( T ) .  x$"( T )  in the 
metallic case of this model shows no maximum. 

T ( K I  *ooi\ 1p 2 p  30 4: ' 

obtained in the ZA spin-orbit model. Therefore, we investigate the temperature depen- 
dences of the magnetic susceptibilities in these two models and compare the results with 
experiment. 

The mean-field hybridisation gap which is given as E, = 2b;/(D - pF) = 
2TK[&(kF) - p F ] / ( D  - pF) at T = 0 K should actually depend on temperature Tbecause 
b i  is obtained as a function of T and vanishes at T = TK in the mean-field theory. 
Although it is suggested that the mean-field theory with this temperature-dependent 
gap is valid for T S 4TK (Auerbach et a1 1988), we mainly investigate here the constant 
T = 0 gap for the reasons explained below. 

Figure 2 illustrates the uniform x f A  ( T )  and antiferromagnetic (staggered) 
x P ( T )  susceptibilities calculated in the ZA model for the insulating (&(kF) = 0.5) and 
metallic ( ~ ( k ~ )  = 0.475) large quasiparticle-filling parameters (large kF) with TK = 10 K. 
While the uniform susceptibility x f A (  T )  in this model shows a plateau below T = TK in 
the metallic case, representing a typical heavy-fermion system and a broad maximum at 
T = TK in the insulating case with a finite hybridisation gap at pF, the antiferromagnetic 
one x 2 (T)  is always a monotonically decreasing function of temperature. The high- 
temperature behaviours of both the susceptibilities are of the Curie-Weiss form with 
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x tA ( T )  > x gA (T) .  Lower quasiparticle filling (smaller &(kF)) gives these susceptibilities 
larger values reflecting an increase in the tight-binding conduction density of states at 
&(kF). These temperature-dependent behaviours do not change for different Kondo 
temperatures in contrast to those in the SA model described below. Owing to the non- 
conservation of magnetic moment between the two components (f and conduction) in 
the spin-orbit-coupling model, the zero-temperature x tA (T) for the insulating case 
does not vanish (xgA(O) = 2 N , ( D ) p i ) .  

Figures 3 plots the x iA (T)  and xy ( T )  versus temperature curves for the SA model 
for two different values of TK; the upper two curves for TK = 10 K and the lower two 
curves for TK = 50 K. Quasiparticle filling for a fixed TK cannot be controlled in this 
model, and the absolute magnitudes of xiA( T) and x (T) cannot be directly compared 
with those of the ZA model. Because of the absence of a real hybridisation gap at finite 
temperature in the quasiparticle spectrum of this model (with only the very weak pseudo- 
gap), no insulating-like behaviour is found. The most remarkable feature in this model 
is that the temperature dependence of the uniform susceptibility x SA (T) always exhibits 
a small maximum, which appears at a temperature much lower than TK for a ~ow-TK 
system (TKS lOK) and at about TK for a high-TK system (TKa 20K). The anti- 
ferromagnetic susceptibility x (T) curves look rather similar to those of the ZA model. 

On the other hand, if in the ZA model we take into account the temperature depen- 
dence of the hybridisation gap Eg( T) = 2b( T)'/(D - pF) by solving for b( T)*  from the 
gap equation at finite temperatures, we find that the decrease in the gap with increasing 
temperature causes increasingly larger quasiparticle densities of states at the Fermi level 
and leads to the unreasonably large uniform susceptibilities. 

5. Discussion 

The ZA model (Zou and Anderson 1986) is the mean-field theory for describing the 
quasiparticle states in the spin-orbit-coupling, heavy-fermion systems at low tem- 
peratures, T < TK. It is therefore not straightforwardly applicable to the finite-tem- 
perature properties of the heavy-fermion systems. On the other hand, the SA (spin-orbit 
Anderson lattice) model, being treated in the Green-function decoupling approach, can 
produce the quasiparticle states at low temperatures, T < TK, and with inclusion of the 
temperature-dependent renormalisation it can also describe the crossover behaviours 
from the quasiparticle regime to the bare-particle regime. This has been already demon- 
strated in the calculations of the low-temperature specific heat coefficients y( T)  of 
heavy-fermion systems (Kaga and Kubo 1988). Hence, the approach in the SA model 
leads more naturally to the quasiparticle states by renormalisations from the high- 
temperature regime. With these limitations in mind for the two models, we have inves- 
tigated the low-temperature magnetic susceptibilities. 

From a comparison of figures 2 ( a )  and 3(a) we notice that while the uniform sus- 
ceptibility of the ZA model, x g A ( T ) ,  scales well with TK and always forms a plateau, 
whose height depends upon filling factor &(kF), for T Q TK (except for the insulating 
case), that of the SA model, x iA (T) ,  exhibits a small bump at a temperature (T,,,) below 
TK and a decrease at lower temperatures. This maximum-x iA( T)  temperature, T,,,, is 
much smaller than TK for ~ow-TK systems and tends to approach TK for high-TK systems. 
Moreover, this maximum is more pronounced for higher TK. The reasons for these 
behaviours are the following. When a Kondo resonance evolves at T = TK, a pseudo- 
gap begins to form in the bare-particle density of states. Here, while the imaginary parts 
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of the self-energies, Im 2 :@(U), for the high- and ~ow-TK systems are comparable at each 
temperature TK, for temperatures T > TK it becomes smaller for the high-TK systems 
(Kaga and Kubo 1987). Therefore, although these states at T - TK are different from 
the so-called quasiparticle states, a wider energy range with arelatively smaller imaginary 
part for the high-TK systems leads to a large hybridisation splitting and a large xo( T) 
peak even at T = TK. This is impossible for the low-TK systems because at T = TK the 
imaginary part is larger than the TK value. Only at temperatures low enough for 
Im Z 7 e ( ~ )  to become near vanishing the pseudo-gap grows and a weak xo( T )  maximum 
can appear. The high-temperature behaviours of both the xGA ( T )  and the x gA ( T )  are 
of the Curie-like form, x o ( T )  - T- ' ,  as expected. 

Although the magnetic moment discussed in this paper is applicable only to Ce 
heavy-fermion compounds with the J = 4 spin-orbit state, the general temperature- 
dependent behaviours of the uniform susceptibility xo( T )  calculated here can be com- 
pared with the experimental results of other heavy-fermion compounds as well. These 
observed susceptibilities of the uranium heavy-fermion systems URu2Si2 (Palstra et a1 
1985, Maple et a1 1986, Schlabitz et a1 1986) and UPt, (Frings et a1 1983, Ramirez et a1 
1986) clearly exhibit a peak around their conceivable Kondo temperatures of 70 K and 
30 K, respectively, before they undergo an antiferromagnetic phase transition at a lower 
temperature. On the other hand, the low-temperature susceptibilities of the cerium 
compounds CeAI3 (Edelstein et a1 1974, Andres et a1 1975) and CeCuh (Gangopadhyay 
et a1 1988) show only a very weak maximum at a temperature, -0.7 K for CeAl, 
and 20.3 K for CeCu,, much lower than their Kondo temperatures, 2 3  K and =4 K, 
respectively. These observed maximum-x,( T )  temperatures are close to their coherence 
temperatures To = 0.3-0.5 K and 0.5 K, respectively, which were estimated from the 
resistivity measurements (Andres et a1 1975, Ott et a1 1984, Lieke et a1 1982, Stewart 
1984, Sumiyama et a1 1985) and the observed specific-heat coefficients y(  T )  (Flouquet 
er a1 1982, Bred1 et a1 1984, Fujita et a1 1985, Brodale et a1 1986; the origin of a weak 
maximum in CeCu, is still unclear and could be due to either to a magnetic transition or 
to a coherence effect). The above experimental trends for the high-TK U compounds 
and the low-TK Ce compounds are consistent with the present results obtained for TK = 
10 K and 50 K in the SA model. In fact, it has also been shown in the same decoupling 

treatment of the non-spin-orbit Anderson lattice model (Kaga and Kubo 1988) that a 
maximum appears on the specific-heat-coefficient ( y (  T ) )  curve not around TK but 
around the coherence temperature To. 

From these experimental facts one can conclude that the quasiparticle states and the 
temperature-dependent magnetic susceptibilities obtained in the SA model are more 
appropriate for the real heavy-fermion systems, and that those obtained in the mean- 
field ZA model are rather artificial and quite unphysical at finite temperatures. This is 
because the former model takes into account the temperature-dependent imaginary part 
of the self-energy which starts to appear from right above T = 0 or the Fermi energy. 
It falls with decreasing temperature and leads to an incoherent-coherent crossover 
transition across the temperature TK, forming a pseudo-gap, whereas the latter model 
gives rise to a phase transition, opening a real gap. The most important effect in the SA 

model is the large temperature dependence of the quasiparticle density of states for 
temperatures across TK. The self-energy correction made in the SA model however is 
still quite limited and a better self-energy correction is desirable in future. 

We have calculated the effective magnetic moments peff(q) per Ce atom for q = 0 
and q = Q ,  corresponding to the uniform and antiferromagnetic susceptibilities in the 
two models. Here, peff(q)2 is defined as the value of xq(0), (23), divided by that of the 
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expression (23) without the factor Zn ,n t= i l  l p ;$ (k  + q, k )  1 2 .  Approximately the same 
values were obtained for both models; , u $ { ( O ) ~  = 1.20,ui/atom, ,uz t (0)2  = 
1.16 p i /a tom and p:k(Q)2 = 0.73 @;/atom, P S ; ( Q ) ~  = 0.65 p;/atom. These agree- 
ments are to be expected because the effects of the different quasiparticle states obtained 
in the two models are largely cancelled out for the derivation of peff(q). A model- 
independent effective magnetic moment is also seen in the agreement between the 
uniform moments obtained in the present tight-binding models and the Zou-Anderson 
value ~ ~ ~ ~ ( 0 ) ~  = 1.16p;/atom (Zou and Anderson 1986) obtained in the spherical 
conduction-band model. The above antiferromagnetic moments p:$(Q) = 0.81 pB/ 
atom and p L t ( Q )  = 0.85 pB/atom can be roughly compared with the observed magnetic 
moments having antiferromagnetic correlations found in the Ce compounds at low 
temperatures; -0.89 ,uB/Ce for CeA12 (Barbara et a1 1977, Lawrence et a1 1981) and 
~ 0 . 5  pB/Ce for CeA1, (Barth et a1 1989). Such a reduced ordered moment from the 
free-ion value is not limited to Ce compounds and has been found in U compounds as 
well; for example, in U2Znl, the ordered moment (0.8 pB/U) is observed as opposed to 
the high-temperature effective moment (2.2-3.3,uB/U) (Broholm eta1 1987a). However, 
the antiferromagnetic moment observed in the static short-range order of the heavy- 
fermion superconductor CeCu2Si2 is =0.1 pB/Ce (Uemura et a1 1989), being con- 
siderably smaller than the above values. These small antiferromagnetic moments are 
rather common to the other heavy-fermion superconductors URu2Si2 (-0.03 p & J )  
(Broholm et a1 1987b), UPt, (-0.02 pB/U) (Aeppli et a1 1988) and UBe,, (-0.001 pug/ 
U) (Neumann et a1 1986). However, it is interesting to notice that, when the super- 
conductivity or these systems is broken by doping, these small moments are enhanced 
and an antiferromagnetic moment of roughly the calculated magnitude is observed, e.g., 
Ul-,Th,Pt, (-0.7 ,uB/U) and U(Pt, -,Pd,), (Fisk et a1 1987). The superconductivity in 
all these systems takes place in an antiferromagnetically (long or short-range) ordered 
state, and its effect must be suppressing a further growth of the antiferromagnetic 
correlations and ordered moments. This seems to indicate that there are two competing 
quasiparticle interactions in the heavy-fermion states for superconducting pairing and 
antiferromagnetic correlation (Kaga and Yoshida 1988. 1989). The high-temperature 
effective moment of the bare particles ( T  S TK) can be evaluated using the same 
approach in the SA model. In this case the four non-hybridised, f-orbital combinations 
in addition to the two-fold degenerate hybridised ones have their energies at or around 
the same bare f-level E : .  Thus, there are the Van Vleck-term as well as the Pauli-term 
contributions to the susceptibility, giving the effective magnetic moment at the free-ion 
value peff = 2.54 pB. This is in agreement with the high-temperature moments observed 
for the various Ce compounds (2.61 pB/Ce for CeCu2Si2, 2.63 pB/Ce for CeAl,, 2.56 pB/ 
Ce for CeCu6). 

Figures 2 and 3 show that the high-temperature Curie-like uniform susceptibility is 
larger than that of the antiferromagnetic susceptibility. This is explained by the relative 
magnitudes of the effective magnetic moments peff(0)’ and peff(Q)2 that we have seen 
above. On the other hand, the origin for this difference between peff(0)* and peff(Q)’ is 
due to the quasiparticle coherence factor A,(k + q)A, . (k)C,(k + q)C, , (k)  rather than 
the hybridisation anisotropy factor ZMcy(k + q ) a * ( k ) M .  

References 

Aeppli G,  Bucher E,  Broholm C, Kjems J K,  Baumann J and Hufnagl J 1988 Phys. Reu. Lett. 60 615 



Magnetic susceptibility of heavy-fermion systems 981 

Aeppli G and Varma C M 1987 Phys. Reo. Lett. 58 2730 
Anderson P W and Zou Z 1987 Phys. Reo. Lett. 58 2731 
Andres K, Graebner J E and Ott H R 1975 Phys. Reo. Lett. 35 1979 
Auerbach A ,  Kim J H ,  Levin K and Norman M R 1988 Phys. Reo. Lett. 60 623 
Barbara B, Boucherle J X, Buevoz J L, Rossignol M F and Schweizer J 1977 Solid State Commun.  24481 
Barth S ,  Ott H R, Gygax F N, Hitti B, Lippelt E, Schenck A and Baines C 1989 Phys. Reo. B 39 11695 
BaumgartelHGandMuller-HartmannE 1982ValenceZnstabilitiesed. P WachterandHBoppart (Amsterdam: 

Bredl C D ,  Hor S ,  Steglich F, Luthi B and Martin R M 1984 Phys. Reu. Lett. 52 1982 
Brodale G E,  Fisher R A,  Lisse C M,  Phillips N E and Edelstein A S  1986 J. Magn. Magn. Mater. 54-57 416 
Broholm C, Kjems J K, Aeppli G ,  Fisk Z ,  Smith J L,  Shapiro S M, Shirane G and Ott H R 1987a Phys. Reo. 

Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Monovsky A A and Mydosh J A 1987b 

Costi T 1985 J. iMagn. Magn. Mater. 47-48 384 
Cox D L 1987 Phys. Reo. Lett. 58 2730 
Czycholl G 1985 Phys. Reo. B 31 1867 
Edelstein A S ,  Trancchita C J ,  McMaster 0 D and Gschneider K A J r  1974 Solid State Commun.  15 81 
Fedro A J and Sinha S K 1982 Valence Instabilities ed. P Wachter and H Boppart (Amsterdam: North- 

Fisk Z, Ott H Rand Aeppli G 1987 Japan J. Appl .  Phys. Suppl. 26 1882 
Flouquet J ,  Lasjaunias J C, Peyrard J and Riault M 1982 J. Appl .  Phys. 53 2127 
Frings P H ,  Franse J J M, de Boer F R and Menovsky A A 1983 J .  Magn. Magn. Mater. 31-34 240 
Fujita T, Satoh K ,  Onuki Y and Komatsubara T 1985 J .  Magn. Magn. Mater. 47-48 66 
Gangopadhyay A K,  Schilling J S Y. Yand H D, Schelton R N, Schuberth E,  Gutsmiedl D ,  Gross F and 

Grewe N 1984 Solid State Commun.  50 19 
Kaga H and Kubo H 1987 Physica B 147 205 
- 
Kaga H, Kubo H and Fujiwara T 1988 Phys. Reu. B 37 341 
Kaga Hand Yoshida T 1988 Phys. Reo. B 38 12047 
- 1989 Physica C 159 727 
Lawrence J M, Riseborough P S and Parks R D 1981 Rep. Progr. Phys. 44 1 
Lieke W,  Rauchschwalbe U ,  Bredl C D ,  Steglich F, Aarts J and de Boer F R 1982 J. Appl .  Phys. 53 2111 
Maple M B. Chen J W, Dlichaouch Y. Kohara T, Rossel C, Torikachvili M S, Mcelfresh M W and Thompson 

Neumann K U,  Capellmann H,  Fisk Z ,  Smith J Land Ziebeck K R A 1986 Solid State Commun.  60 641 
Ott H R, Rudigier H ,  Fisk Z and Smith J L 1984 Physica B+C 127 359 
Palstra T T M, Menovsky A A,  van den Berg J ,  Dirkmaat A J ,  Kes P H,  Nieuwenhuys G J and Mydosh J A 

Ramirez A P. Batlogg B, Bucher E and Cooper A S 1986 Phys. Reu. Lett. 57 1072 
Shlabitz W,  Baumann J and Pollit B 1986 Z .  Phys. B 62 171 
Stewart G R 1984 Reo. Mod.  Phys. 56 755 
Sumiyama A,  Oda Y. Nagano H, Onuki Y and Komatsubara T 1985 J .  Phys. Soc. Japan 54 877 
Uemura Y J ,  Kossler W J ,  Yu X H, Schone H E, Kempton J R, Stronach C E,  Barth S, Gygax F N ,  Hitti B, 

Zhang F C and Lee T K 1987 Phys. Reo. Lett. 58 2728 
Zou Z and Anderson P W 1986 Phys. Reo. Lett. 57 2073 

North-Holland) p 57 

Lett. 58 917 

Phys. Reo. Lett. 58 1467 

Holland) p 371 

Andres K 1988 Physica C 153-155 443 

1988 Solid State Commun.  65 257 

J D 1986 Phys. Reo. Lett. 56 185 

1985 Phys. Rev.  Lett. 55 2727 

Schenck A ,  Baines C, Lankford W F, Onuki Y and Komatsubara T 1989 Phys. Reu. B 39 4726 


